Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Exploring sequence-function space of a poplar glutathione transferase using designed information-rich gene variants.

Identifieur interne : 001395 ( Main/Exploration ); précédent : 001394; suivant : 001396

Exploring sequence-function space of a poplar glutathione transferase using designed information-rich gene variants.

Auteurs : Yaman Musdal [Suède] ; Sridhar Govindarajan [États-Unis] ; Bengt Mannervik [Suède]

Source :

RBID : pubmed:28967959

Descripteurs français

English descriptors

Abstract

Exploring the vicinity around a locus of a protein in sequence space may identify homologs with enhanced properties, which could become valuable in biotechnical and other applications. A rational approach to this pursuit is the use of 'infologs', i.e. synthetic sequences with specific substitutions capturing maximal sequence information derived from the evolutionary history of the protein family. Ninety-five such infolog genes of poplar glutathione transferase were synthesized and expressed in Escherichia coli, and the catalytic activities of the proteins determined with alternative substrates. Sequence-activity relationships derived from the infologs were used to design a second set of 47 infologs in which 90% of the members exceeded wild-type properties. Two mutants, C2 (V55I/E95D/D108E/A160V) and G5 (F13L/C70A/G122E), were further functionally characterized. The activities of the infologs with the alternative substrates 1-chloro-2,4-dinitrobenzene and phenethyl isothiocyanate, subject to different chemistries, were positively correlated, indicating that the examined mutations were affecting the overall catalytic competence without major shift in substrate discrimination. By contrast, the enhanced protein expressivity observed in many of the mutants were not similarly correlated with the activities. In conclusion, small libraries of well-defined infologs can be used to systematically explore sequence space to optimize proteins in multidimensional functional space.

DOI: 10.1093/protein/gzx045
PubMed: 28967959
PubMed Central: PMC5914380


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Exploring sequence-function space of a poplar glutathione transferase using designed information-rich gene variants.</title>
<author>
<name sortKey="Musdal, Yaman" sort="Musdal, Yaman" uniqKey="Musdal Y" first="Yaman" last="Musdal">Yaman Musdal</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Neurochemistry, Arrhenius Laboratories, Stockholm University, Svante Arrhenius väg 16B, SE-10691 Stockholm, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Neurochemistry, Arrhenius Laboratories, Stockholm University, Svante Arrhenius väg 16B, SE-10691 Stockholm</wicri:regionArea>
<orgName type="university">Université de Stockholm</orgName>
<placeName>
<settlement type="city">Stockholm</settlement>
<region nuts="1">Svealand</region>
<region nuts="1">Comté de Stockholm</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Govindarajan, Sridhar" sort="Govindarajan, Sridhar" uniqKey="Govindarajan S" first="Sridhar" last="Govindarajan">Sridhar Govindarajan</name>
<affiliation wicri:level="2">
<nlm:affiliation>ATUM, 37950 Central Ct, Newark, CA 94560, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>ATUM, 37950 Central Ct, Newark, CA 94560</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Mannervik, Bengt" sort="Mannervik, Bengt" uniqKey="Mannervik B" first="Bengt" last="Mannervik">Bengt Mannervik</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Neurochemistry, Arrhenius Laboratories, Stockholm University, Svante Arrhenius väg 16B, SE-10691 Stockholm, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Neurochemistry, Arrhenius Laboratories, Stockholm University, Svante Arrhenius väg 16B, SE-10691 Stockholm</wicri:regionArea>
<orgName type="university">Université de Stockholm</orgName>
<placeName>
<settlement type="city">Stockholm</settlement>
<region nuts="1">Svealand</region>
<region nuts="1">Comté de Stockholm</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:28967959</idno>
<idno type="pmid">28967959</idno>
<idno type="doi">10.1093/protein/gzx045</idno>
<idno type="pmc">PMC5914380</idno>
<idno type="wicri:Area/Main/Corpus">001148</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001148</idno>
<idno type="wicri:Area/Main/Curation">001148</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001148</idno>
<idno type="wicri:Area/Main/Exploration">001148</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Exploring sequence-function space of a poplar glutathione transferase using designed information-rich gene variants.</title>
<author>
<name sortKey="Musdal, Yaman" sort="Musdal, Yaman" uniqKey="Musdal Y" first="Yaman" last="Musdal">Yaman Musdal</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Neurochemistry, Arrhenius Laboratories, Stockholm University, Svante Arrhenius väg 16B, SE-10691 Stockholm, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Neurochemistry, Arrhenius Laboratories, Stockholm University, Svante Arrhenius väg 16B, SE-10691 Stockholm</wicri:regionArea>
<orgName type="university">Université de Stockholm</orgName>
<placeName>
<settlement type="city">Stockholm</settlement>
<region nuts="1">Svealand</region>
<region nuts="1">Comté de Stockholm</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Govindarajan, Sridhar" sort="Govindarajan, Sridhar" uniqKey="Govindarajan S" first="Sridhar" last="Govindarajan">Sridhar Govindarajan</name>
<affiliation wicri:level="2">
<nlm:affiliation>ATUM, 37950 Central Ct, Newark, CA 94560, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>ATUM, 37950 Central Ct, Newark, CA 94560</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Mannervik, Bengt" sort="Mannervik, Bengt" uniqKey="Mannervik B" first="Bengt" last="Mannervik">Bengt Mannervik</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Neurochemistry, Arrhenius Laboratories, Stockholm University, Svante Arrhenius väg 16B, SE-10691 Stockholm, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Neurochemistry, Arrhenius Laboratories, Stockholm University, Svante Arrhenius väg 16B, SE-10691 Stockholm</wicri:regionArea>
<orgName type="university">Université de Stockholm</orgName>
<placeName>
<settlement type="city">Stockholm</settlement>
<region nuts="1">Svealand</region>
<region nuts="1">Comté de Stockholm</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Protein engineering, design & selection : PEDS</title>
<idno type="eISSN">1741-0134</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Directed Molecular Evolution (methods)</term>
<term>Escherichia coli (genetics)</term>
<term>Glutathione Transferase (chemistry)</term>
<term>Glutathione Transferase (genetics)</term>
<term>Glutathione Transferase (metabolism)</term>
<term>Models, Molecular (MeSH)</term>
<term>Plant Proteins (chemistry)</term>
<term>Plant Proteins (genetics)</term>
<term>Plant Proteins (metabolism)</term>
<term>Populus (enzymology)</term>
<term>Populus (genetics)</term>
<term>Protein Engineering (MeSH)</term>
<term>Recombinant Proteins (chemistry)</term>
<term>Recombinant Proteins (genetics)</term>
<term>Recombinant Proteins (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Escherichia coli (génétique)</term>
<term>Glutathione transferase (composition chimique)</term>
<term>Glutathione transferase (génétique)</term>
<term>Glutathione transferase (métabolisme)</term>
<term>Ingénierie des protéines (MeSH)</term>
<term>Modèles moléculaires (MeSH)</term>
<term>Populus (enzymologie)</term>
<term>Populus (génétique)</term>
<term>Protéines recombinantes (composition chimique)</term>
<term>Protéines recombinantes (génétique)</term>
<term>Protéines recombinantes (métabolisme)</term>
<term>Protéines végétales (composition chimique)</term>
<term>Protéines végétales (génétique)</term>
<term>Protéines végétales (métabolisme)</term>
<term>Évolution moléculaire dirigée (méthodes)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Glutathione Transferase</term>
<term>Plant Proteins</term>
<term>Recombinant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Glutathione transferase</term>
<term>Protéines recombinantes</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Escherichia coli</term>
<term>Glutathione Transferase</term>
<term>Plant Proteins</term>
<term>Populus</term>
<term>Recombinant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Escherichia coli</term>
<term>Glutathione transferase</term>
<term>Populus</term>
<term>Protéines recombinantes</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Glutathione Transferase</term>
<term>Plant Proteins</term>
<term>Recombinant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Directed Molecular Evolution</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Glutathione transferase</term>
<term>Protéines recombinantes</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" qualifier="méthodes" xml:lang="fr">
<term>Évolution moléculaire dirigée</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Models, Molecular</term>
<term>Protein Engineering</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Ingénierie des protéines</term>
<term>Modèles moléculaires</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Exploring the vicinity around a locus of a protein in sequence space may identify homologs with enhanced properties, which could become valuable in biotechnical and other applications. A rational approach to this pursuit is the use of 'infologs', i.e. synthetic sequences with specific substitutions capturing maximal sequence information derived from the evolutionary history of the protein family. Ninety-five such infolog genes of poplar glutathione transferase were synthesized and expressed in Escherichia coli, and the catalytic activities of the proteins determined with alternative substrates. Sequence-activity relationships derived from the infologs were used to design a second set of 47 infologs in which 90% of the members exceeded wild-type properties. Two mutants, C2 (V55I/E95D/D108E/A160V) and G5 (F13L/C70A/G122E), were further functionally characterized. The activities of the infologs with the alternative substrates 1-chloro-2,4-dinitrobenzene and phenethyl isothiocyanate, subject to different chemistries, were positively correlated, indicating that the examined mutations were affecting the overall catalytic competence without major shift in substrate discrimination. By contrast, the enhanced protein expressivity observed in many of the mutants were not similarly correlated with the activities. In conclusion, small libraries of well-defined infologs can be used to systematically explore sequence space to optimize proteins in multidimensional functional space.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">28967959</PMID>
<DateCompleted>
<Year>2017</Year>
<Month>10</Month>
<Day>10</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1741-0134</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>30</Volume>
<Issue>8</Issue>
<PubDate>
<Year>2017</Year>
<Month>08</Month>
<Day>01</Day>
</PubDate>
</JournalIssue>
<Title>Protein engineering, design & selection : PEDS</Title>
<ISOAbbreviation>Protein Eng Des Sel</ISOAbbreviation>
</Journal>
<ArticleTitle>Exploring sequence-function space of a poplar glutathione transferase using designed information-rich gene variants.</ArticleTitle>
<Pagination>
<MedlinePgn>543-549</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1093/protein/gzx045</ELocationID>
<Abstract>
<AbstractText>Exploring the vicinity around a locus of a protein in sequence space may identify homologs with enhanced properties, which could become valuable in biotechnical and other applications. A rational approach to this pursuit is the use of 'infologs', i.e. synthetic sequences with specific substitutions capturing maximal sequence information derived from the evolutionary history of the protein family. Ninety-five such infolog genes of poplar glutathione transferase were synthesized and expressed in Escherichia coli, and the catalytic activities of the proteins determined with alternative substrates. Sequence-activity relationships derived from the infologs were used to design a second set of 47 infologs in which 90% of the members exceeded wild-type properties. Two mutants, C2 (V55I/E95D/D108E/A160V) and G5 (F13L/C70A/G122E), were further functionally characterized. The activities of the infologs with the alternative substrates 1-chloro-2,4-dinitrobenzene and phenethyl isothiocyanate, subject to different chemistries, were positively correlated, indicating that the examined mutations were affecting the overall catalytic competence without major shift in substrate discrimination. By contrast, the enhanced protein expressivity observed in many of the mutants were not similarly correlated with the activities. In conclusion, small libraries of well-defined infologs can be used to systematically explore sequence space to optimize proteins in multidimensional functional space.</AbstractText>
<CopyrightInformation>© The Author 2017. Published by Oxford University Press.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Musdal</LastName>
<ForeName>Yaman</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>Department of Neurochemistry, Arrhenius Laboratories, Stockholm University, Svante Arrhenius väg 16B, SE-10691 Stockholm, Sweden.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Govindarajan</LastName>
<ForeName>Sridhar</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>ATUM, 37950 Central Ct, Newark, CA 94560, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Mannervik</LastName>
<ForeName>Bengt</ForeName>
<Initials>B</Initials>
<AffiliationInfo>
<Affiliation>Department of Neurochemistry, Arrhenius Laboratories, Stockholm University, Svante Arrhenius väg 16B, SE-10691 Stockholm, Sweden.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Protein Eng Des Sel</MedlineTA>
<NlmUniqueID>101186484</NlmUniqueID>
<ISSNLinking>1741-0126</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011994">Recombinant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.5.1.18</RegistryNumber>
<NameOfSubstance UI="D005982">Glutathione Transferase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D019020" MajorTopicYN="N">Directed Molecular Evolution</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004926" MajorTopicYN="N">Escherichia coli</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005982" MajorTopicYN="N">Glutathione Transferase</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008958" MajorTopicYN="N">Models, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015202" MajorTopicYN="N">Protein Engineering</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011994" MajorTopicYN="N">Recombinant Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">alternative substrates</Keyword>
<Keyword MajorTopicYN="Y">directed protein evolution</Keyword>
<Keyword MajorTopicYN="Y">enhanced activities</Keyword>
<Keyword MajorTopicYN="Y">glutathione transferase</Keyword>
<Keyword MajorTopicYN="Y">infologs</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2017</Year>
<Month>07</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2017</Year>
<Month>08</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>10</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>10</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>10</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28967959</ArticleId>
<ArticleId IdType="pii">4097656</ArticleId>
<ArticleId IdType="doi">10.1093/protein/gzx045</ArticleId>
<ArticleId IdType="pmc">PMC5914380</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>New Phytol. 2017 Apr;214(1):294-303</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27924627</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 Aug 15;97(17):9408-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10900265</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2014;1179:103-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25055773</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ACS Synth Biol. 2015 Mar 20;4(3):221-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24905764</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Chem. 2016 Oct 07;4:39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27774447</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1975 Dec 18;258(5536):598-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1678</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Chem. 2017 Jan;9(1):50-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27995916</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Q Rev Biophys. 2015 Nov;48(4):404-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26537398</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2014;1179:3-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25055767</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chemosphere. 2008 Oct;73(5):657-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18774158</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Mar 28;103(13):4876-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16549767</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Biotechnol. 2007 Mar 26;7:16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17386103</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2015 Sep;1850(9):1877-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26026470</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Comput Chem. 2004 Oct;25(13):1605-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15264254</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1974 Nov 25;249(22):7130-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4436300</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Eng Des Sel. 2016 Sep;29(9):355-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27542390</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Mar 7;278(10):8733-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12486119</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Rep. 2015 Dec 04;5:141-145</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28955816</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2014;1079:105-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24170397</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2008 Dec;1780(12):1458-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18706975</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2001 Oct 2;40(39):11660-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11570866</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Aug 16;277(33):30019-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12023294</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2016 Sep 14;537(7620):320-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27629638</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Exp Med Biol. 2016;945:491-509</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27826849</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2010 Feb 19;285(8):5639-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20022951</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1995 Oct 15;311 ( Pt 2):453-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7487881</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Eng Des Sel. 2008 Dec;21(12):699-707</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18836204</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Expr Purif. 1995 Jun;6(3):265-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7663160</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2015 Apr;1850(4):742-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25542299</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 1976 Aug 23;71(4):952-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">971321</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Eng Des Sel. 2013 Jan;26(1):25-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23012440</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1994 Aug 4;370(6488):389-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8047147</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Expr Purif. 2012 May;83(1):37-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22425659</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Suède</li>
<li>États-Unis</li>
</country>
<region>
<li>Californie</li>
<li>Comté de Stockholm</li>
<li>Svealand</li>
</region>
<settlement>
<li>Stockholm</li>
</settlement>
<orgName>
<li>Université de Stockholm</li>
</orgName>
</list>
<tree>
<country name="Suède">
<region name="Svealand">
<name sortKey="Musdal, Yaman" sort="Musdal, Yaman" uniqKey="Musdal Y" first="Yaman" last="Musdal">Yaman Musdal</name>
</region>
<name sortKey="Mannervik, Bengt" sort="Mannervik, Bengt" uniqKey="Mannervik B" first="Bengt" last="Mannervik">Bengt Mannervik</name>
</country>
<country name="États-Unis">
<region name="Californie">
<name sortKey="Govindarajan, Sridhar" sort="Govindarajan, Sridhar" uniqKey="Govindarajan S" first="Sridhar" last="Govindarajan">Sridhar Govindarajan</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001395 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001395 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:28967959
   |texte=   Exploring sequence-function space of a poplar glutathione transferase using designed information-rich gene variants.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:28967959" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020